Specimen Paper A

1 Express in partial fractions
$$\frac{2x}{(x+3)^2}$$
 3

2 Differentiate (a)
$$y=6^{x}$$
 (b) $y=2xe^{\sec 2x}$ 3,3

3 Find the equation of the locus of
$$|z-2i| = 3$$
, z a complex number.
Describe geometrically the locus. 4

4 Use integration by parts twice to find
$$\int x^2 e^{-x} dx$$
 5

5 Prove by induction
$$\sum_{r=1}^{n} (2r+1) = n(n+2), n \ge 1, n$$
 a whole number.4

6 A curve is defined by the equation
$$x^2 - 3xy + y = 5$$
.
Find the equation of the tangent at the point where x=-1. 5

7 Use the substitution
$$x = 2\sin\theta$$
 to evaluate $\int_{0}^{1} \frac{2}{\sqrt{4-x^2}} dx$ 5

8 The sum to infinity of both Geometric series
$$x + x^2 + x^3 + ...$$
 and
 $3 + \frac{3(x-1)}{x} + \frac{3(x-1)^2}{x^2} + ...$ exist and are both equal provided $\frac{1}{2} < x < 1$.

Find the value of *x*.

5

9/over

	(a)	$n^3 + n$ is always even.	
	(b)	$n^2 + n + 5$ is always prime	2,1
10	Find <u>c</u>	$\underline{a} \times \underline{b}, \underline{a} = i + j + 3k, \underline{b} = -j + 2k$	3
11	Find th	the Maclaurin series up to x^3 for $f(x) = x \cos x$	5
12	(a)	Find the acute angle between the planes $2x + y - z = 3$ and $x + z = 0$	
	(b)	Find the point of intersection of the line $x = 2t + 1$, $y = 3t$, $z = 4$ and $x + z = 0$	3,3

13 For a matrix A,
$$A^3 - A = I$$

- (a) Find A^{-1} in the form $pA^2 + q$, stating the values of p and q.
- (b) Find A^5 in the form $rA^2 + sA + I$, stating the values of r and s. 2,3
- 14 Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 32e^x$$

and given $y = \frac{dy}{dx} = 0$, when x=0 find the particular solution, 7,3

/over

15 X is the percentage of a class of 15 students who hope to pass a 3 hour Mathematics Exam after attempting T practice papers.

At the first attempt 50% of the class passed. The attempts are modelled by the differential equation

16

17

dX	$=\frac{X(1-X)}{(3+X)}, 0.5 \le X < 1$			
dT	$\frac{1}{(3+X)}, 0.3 \le X < 1$			
(a)	Show that $T = A \ln_e \frac{X^3}{(1-X)^4}$, stating the value A to 2 decimal pla	ces.		
(b)	How many practice papers are needed for 70% of the class to pas	s?		
(c)	The class teacher estimates she will have to produce 9 papers in order that 80 % of the class pass.			
(d)	Is this estimate reasonable or just <i>pi</i> in the sky? If 12 papers are produced will the % pass rate improve to 90%?	6,2,2,1		
Let z be the complex number $z = \cos \theta + i \sin \theta$				
(a)	Show that $\overline{z} = \frac{1}{z}$ and express $z - \overline{z}$ in terms of $\sin \theta$.			
	Hence show that $(z - \overline{z})^2 = p \sin^2 \theta$, stating the value of p.	3,2		
(b)	Using de Moivre's theorem write down an expression for z^2			
	and hence find an expression for $\frac{1}{z^2}$	3		
(c)	By expanding $(z-\overline{z})^2$ and using the results of (a) and (b)			
	show that $\sin^2 \theta = q \cos 2\theta + r$ stating the values of q and r	2		
A function f is defined by the formula $f(x) = x + 2 + \frac{4}{x^2}, x \neq 0$				
(a)	Write down the equations of both asymptotes.	2		
(b)	Show that f has only one critical point. Find the coordinates of the point and justify its nature.	4		
(c)	Sketch the graph of $y = f(x)$ showing all the main features	1		
(d)	Find the equation of $y = f(-x)$ and hence write down the			
	Coordinates of its critical point and the equation of the Non vertical asymptote.	3		

End of question paper Total = 100 mark