## Specimen Paper A

1 Express in partial fractions $\frac{2 x}{(x+3)^{2}}$

2 Differentiate (a) $y=6^{x}$
(b) $y=2 x e^{\sec 2 x}$

3,3

3 Find the equation of the locus of $|z-2 i|=3$, $z$ a complex number.
Describe geometrically the locus.
4 Use integration by parts twice to find $\int x^{2} e^{-x} d x$
5 Prove by induction $\sum_{r=1}^{n}(2 r+1)=n(n+2), n \geq 1, n$ a whole number. 4
$6 \quad$ A curve is defined by the equation $x^{2}-3 x y+y=5$.
Find the equation of the tangent at the point where $x=-1$.
7 Use the substitution $x=2 \sin \theta$ to evaluate $\int_{0}^{1} \frac{2}{\sqrt{4-x^{2}}} d x$
8 The sum to infinity of both Geometric series $x+x^{2}+x^{3}+\ldots$ and $3+\frac{3(x-1)}{x}+\frac{3(x-1)^{2}}{x^{2}}+\ldots . \quad$ exist and are both equal provided $\frac{1}{2}<x<1$.

Find the value of $x$.

9/over

9 For $n \geq 1, n$ a natural number prove whether the following
Statements are true or false, if false provide a counter example.
(a) $\quad n^{3}+n$ is always even.
(b) $n^{2}+n+5$ is always prime
2,1

10 Find $\underline{a} \times \underline{b}, \quad \underline{a}=i+j+3 k, \quad \underline{b}=-j+2 k$ 3

11 Find the Maclaurin series up to $x^{3}$ for $f(x)=x \cos x$ 5

12 (a) Find the acute angle between the planes

$$
2 x+y-z=3 \text { and } x+z=0
$$

(b) Find the point of intersection of the line $x=2 t+1, y=3 t, z=4$ and $x+z=0$

3,3

13 For a matrix $A, A^{3}-A=I$
(a) Find $A^{-1}$ in the form $p A^{2}+q$, stating the values of $p$ and $q$.
(b) Find $A^{5}$ in the form $r A^{2}+s A+I$, stating the values of $r$ and $s$. 2,3

14 Find the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+25 y=32 e^{x}
$$

and given $y=\frac{d y}{d x}=0$, when $x=0$ find the particular solution, 7,3
$15 \quad X$ is the percentage of a class of 15 students who hope to pass a 3 hour Mathematics Exam after attempting $T$ practice papers.

At the first attempt $50 \%$ of the class passed.
The attempts are modelled by the differential equation

$$
\frac{d X}{d T}=\frac{X(1-X)}{(3+X)}, \quad 0.5 \leq X<1
$$

(a) Show that $T=A \ln _{e} \frac{X^{3}}{(1-X)^{4}}$, stating the value $A$ to 2 decimal places.
(b) How many practice papers are needed for $70 \%$ of the class to pass ?
(c) The class teacher estimates she will have to produce 9 papers in order that $80 \%$ of the class pass. Is this estimate reasonable or just $p i$ in the sky?
(d) If 12 papers are produced will the $\%$ pass rate improve to $90 \%$ ?

16 Let $z$ be the complex number $z=\cos \theta+i \sin \theta$
(a) Show that $\bar{z}=\frac{1}{z}$ and express $z-\bar{z}$ in terms of $\sin \theta$.

Hence show that $(z-\bar{z})^{2}=p \sin ^{2} \theta$, stating the value of $p$.
(b) Using de Moivre's theorem write down an expression for $z^{2}$ and hence find an expression for $\frac{1}{z^{2}}$
(c) By expanding $(z-\bar{z})^{2}$ and using the results of (a) and (b) show that $\sin ^{2} \theta=q \cos 2 \theta+r$ stating the values of $q$ and $r$

17 A function $f$ is defined by the formula $f(x)=x+2+\frac{4}{x^{2}}, x \neq 0$
(a) Write down the equations of both asymptotes.
(b) Show that $f$ has only one critical point.

Find the coordinates of the point and justify its nature.
(c) Sketch the graph of $y=f(x)$ showing all the main features
(d) Find the equation of $y=f(-x)$ and hence write down the Coordinates of its critical point and the equation of the Non vertical asymptote.

End of question paper Total = $\mathbf{1 0 0}$ mark

